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a b s t r a c t

The dynamics of particle–particle collisions in a viscous fluid are numerically investigated. A
distributed-Lagrange-multiplier-based computational method in a solid-fluid system is
developed and a collision strategy for general shape objects is presented. In earlier methods,
a repulsive force is applied to the particles when their separation is less than a critical value
and, depending on the magnitude of this repulsive force, collision may not be prevented or
particles may bounce unrealistically. In the present method, upon collision of two or more
particles, a uniformly distributed force is added to each particle. The contact force is calcu-
lated and the relative velocity of the particles along their line of center vanishes. For non-
spherical (or non-cylindrical in 2-D) particles the force due to collision may lead to a torque
around the center of mass of each particle. In this situation, the uniform distributed force is
modified in order to create a net torque around the center of mass of each particle without
changing the net force applied to that particle. The contact force is impulsive at the onset
of the collision process and decreases smoothly to zero when contact ends. Particles separate
from each other when the contact force vanishes and subsequently, a rigidity constraint is
satisfied for each particle separately. Results for systems of multi-particle and general shape
objects in a viscous fluid are presented.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In order to accurately predict the behavior of particulate flows, a fundamental knowledge of the mechanisms of particle
collision is required. Classical lubrication theory predicts that the lubrication force becomes singular as the distance between
two smooth spheres approaches zero and hence prevents smooth spheres from touching. In practice, no general numerical
method can afford the computational cost of resolving the flow in the narrow gaps between closely-spaced particles and
some modelling is needed. In reality, the surface of particles has some roughness and the bumps make physical contact
due to the discrete molecular nature of the fluid and/or attractive London-van der Waals forces. Thus, further approach is
prevented, and solid–solid contact occurs [1].

Davis [2] considered a roll/slip model and a stick/rotate model for the motion of touching spheres in Stokes flow and
found that the roll/slip model is consistent with experiments [3]. Ekiel-Jezewska et al. [4,5] used the roll/slip model of con-
tact for interaction between two spherical particles immersed in a viscous fluid. Comparison of the model with experimental
results for the settling motion of a sphere in the vicinity of another fixed sphere showed good agreement. Zhang et al. [6]
considered collision of a sphere onto a stationary sphere at finite Reynolds numbers. Their experimental results are in agree-
ment with the mechanistic model they developed and the numerical results using the lattice Boltzmann method. Lin et al. [7]
studied an elastic collision between two cylindrical particles also using the lattice Boltzmann method.

Particulate flow simulations under the Stokes-flow assumption have been conducted using Stokesian-dynamics techniques
[8]. For dilute suspensions, the unsteady motion of two solid spheres has also been analyzed [9]. However, for intermediate Rey-
. All rights reserved.
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nolds numbers the use of numerical simulation is generally unavoidable. A distributed Lagrange multiplier (DLM)-based com-
putational method is used here in order to simulate particulate flow and collisions between particles. Glowinski et al. [10,11]
employed a finite-element approach utilizing DLM with a fixed structured grid thus eliminating the need of remeshing required
for unstructured boundary-fitted grids. In DLM, the entire domain is treated as a fluid but the fluid inside the particle domain
satisfies a rigidity constraint by using Lagrange multipliers. The DLM solution can be formulated by forcing the deformation ten-
sor in the particle domain to be zero thus eliminating U andx as variables from the coupled system of equations, where U andx
are the translational and angular velocity of the particle, respectively [12,13]. This formulation introduces a stress field in the
particle domain similar to the pressure in an incompressible fluid. Sharma et al. [14] presented a formulation based on DLM for
steady Stokes flow using a control-volume method. The numerical simulation used in the present paper is based on the DLM
method implemented using a control-volume approach and the SIMPLE [15] algorithm.

Previous analyses show that smooth particles do not come into physical contact under finite forces [1]. However, as ex-
plained earlier in physical situations, particle surface has some roughness and solid–solid contact occurs due to the discrete
molecular nature of the fluid and/or attractive London-van der Waals forces. In numerical simulations, contact can occur due
to numerical truncation errors and thus it is necessary to use a reliable collision strategy. In earlier approaches, a repulsive
force was applied to the particles when their separation was less than a critical value. In order to have at most one rigid body
motion constraint at each node, the particles were limited to be more than one grid element apart as described by Glowinski
et al. [11] and Singh et al. [16]. Singh et al. [17] modified DLM in order to eliminate the so-called security zone by allowing
the particles to be close to each other and even overlap. They used the constraint of the closer particle to the node, in order to
prevent the conflict of having two rigid-body constraints at one node. The repulsive force is applied when the particles over-
lap. In these collision schemes, the choice of the stiffness parameter is important. If the stiffness parameter is too small, the
collision will not be prevented and if it is too large, the repulsive force will be too strong and particles will bounce unreal-
istically as explained by Hu et al. [18]. Another approach is to use the solid-body collision model which neglects the fluid
during the collision process. In this method, a fully explicit scheme is used for updating particle positions and velocities
but the method can be unstable as noted by Hu et al. [18]. Ardekani and Rangel [19] developed a collision strategy, in which
no repulsive force is applied to the particles and instead the contact force between particles is computed. By using conser-
vation of linear momentum along the particles line of centers, both particles can be rigidified together. One advantage of this
method is that the particle velocity is not updated explicitly thus preventing numerical instabilities. Furthermore, the par-
ticles do not overlap and we do not have two rigid body motion constraints (one for each particle) at one node. Contact starts
when the distance between particles becomes zero for smooth particles and ends when the contact force becomes zero since
the particles cannot apply a tensile force to each other. For particles with surface roughness, the contact starts when their
separation reaches the roughness height. Since the normal force applied to particles is calculated, one could use this strategy
for collisions including friction. Here, we generalize the numerical investigation of the collision process by Ardekani and Ran-
gel [19] for multi-particle and general shape objects.

2. Theoretical development

The governing equations in the fluid domain for a particulate flow are
qf
Du
Dt
¼ r � rþ qf g in X n P ð1Þ

r � u ¼ 0 in X n P ð2Þ
u ¼ Upi

þ xi � r on oP ð3Þ
ujt¼0 ¼ u0ðxÞ in X n P ð4Þ
in addition to the outer boundary conditions on C. In these equations, C represents the fluid boundary which is not shared
with the particle. The solid domain and its boundary are denoted by P and oP, respectively. The computational domain is X,
including both the fluid and the particle, u is the fluid velocity, g is the acceleration of gravity, qf is the fluid density, n is the
normal unit vector on the surface, Upi

is the ith particle velocity, and xi is the ith particle angular velocity. The initial velocity
u0 satisfies the continuity equation, r ¼ �pIþ s is the stress tensor, p is the pressure field, I is the identity tensor, and s is the
viscous stress:
s ¼ 2lD½u� ¼ l½ruþ ðruÞT� ð5Þ
The governing equations in the particle domain are
qP
Du
Dt
¼ r � rþ qPg in P ð6Þ

r � u ¼ 0 in P ð7Þ
D½u� ¼ 0 in P ð8Þ
u ¼ Upi

þ xi � r on oP ð9Þ
ujt¼0 ¼ u0ðxÞ in P ð10Þ
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where qP is the particle density. Eq. (8) satisfies the continuity equation but in order to facilitate numerical implementation,
Eq. (7) is retained. As pointed out by Sharma et al. [14], the rigidity constraint gives rise to a stress field inside the particle
which is a function of three scalar Lagrange multipliers for three dimensional problems. Thus
r ¼ �pIþ sþ D½k� ð11Þ
where k represents the Lagrange multipliers and s is zero inside the particle due to the rigidity constraint. The governing
equations in the entire domain can be combined as
q
Du
Dt
¼ r � rþ qgþ f in X ð12Þ

r � u ¼ 0 in X ð13Þ
ujt¼0 ¼ u0ðxÞ in X ð14Þ
where
q ¼ qf in X n P

qP in P

(
ð15Þ
in addition to the outer boundary conditions on C. In the above equations, f ¼ r � D½k� is zero everywhere except in the par-
ticle domain and leads to the rigid-body motion inside the particle.

3. Numerical implementation

A finite-volume method using a staggered grid for incompressible flow is implemented. The SIMPLE algorithm [15] is
used to solve the fluid equations with modifications to account for the presence of particles. The Crank–Nicolson scheme
is used for time discretization.

The discretised momentum equations for 2-D flows in the x and y directions are
ai;Jui;J ¼
X

anbunb �
pI;J � pI�1;J

dxu
DVu þ bi;J þ Fxi;J ð16Þ

aI;jvI;j ¼
X

anbvnb �
pI;J � pI;J�1

dyv
DVv þ bI;j þ FyI;j ð17Þ
where DVu and DVv are the volumes of the u-cell and v-cell, respectively; u and v represent the horizontal and vertical com-
ponents of the velocity field; I and J are the nodes at the center of the main control volumes; while i and j represent the nodes
at the center of the control volumes for u and v, respectively, as shown in Fig. 1. Subscript nb refers to corresponding neigh-
boring staggered control volumes; b is the momentum source term which includes the gravity term; and F represents the
rigidity force which makes the velocity field inside the particle domain satisfy the rigidity constraint.

Following the SIMPLE algorithm and taking the particles into account, the force F is added as an unknown variable and
F ¼ F� þ F0 where F� is the force predicted at each iteration (the force calculated in the previous iteration) and F0 is the cor-
rection force. At each iteration, the rigidity force is defined as
Fxi;J ¼ F�xi;J þ CqPAi;Jðui;J � uRi;JÞ ð18Þ
and similarly in the y direction
FyI;j ¼ F�yI;j þ CqPAI;jðvI;j � vRI;jÞ ð19Þ
ui-1,J ui,J ui+1,J

ui,J+1ui-1,J+1 ui+1,J+1

vI,j

vI-1,j+1

vI,j+2vI-1,j+2

vI,j+1

vI-1,j

PI,J

Fig. 1. Staggered grid, u control volume and corresponding volume fraction.
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where Ai;J and AI;j are the areas of the u-cell and v-cell, respectively; while uR is the velocity vector rigidified inside the particle,
equal to u outside the particle domain. C is a dimensional constant defined as C ¼ �aUs, wherea is a dimensionless factor whose
values are provided in Section 5; Us is the velocity scale in the problem. In these equations, the force correction is assumed to be
proportional to the particle density and grid area since it should be proportional to the grid inertia. This formulation resembles a
penalty approach. However, the reason behind Eqs. (18) and (19) is explained as follows. Consider step 1 shown in Fig. 2. If we
use the corrected force F� þ F 0 as a source term to that equation, the velocity field will be the rigidified velocity. Thus
ai;JuRi;J ¼
X

anbuRnb �
pI;J � pI�1;J

dxu
DVu þ bi;J þ F�xi;J þ F 0xi;J ð20Þ

aI;jvRI;j ¼
X

anbvRnb �
pI;J � pI;J�1

dyv
DVv þ bI;j þ F�yI;j þ F 0yI;j ð21Þ
Fig. 2. Flowchart.



10098 A.M. Ardekani et al. / Journal of Computational Physics 227 (2008) 10094–10107
Subtracting this equation from step 1 shown in Fig. 2, we have
ai;Jðui;J � uRi;JÞ ¼
X

anbðunb � uRnbÞ þ F 0xi;J ð22Þ
aI;jðvI;j � vRI;jÞ ¼

X
anbðvnb � vRnbÞ þ F 0yI;j ð23Þ
One can use the following equation to calculate F 0x and F 0y or further simplification can be achieved by neglecting the sum-
mation on the right hand side of the above equations. ai;J and aI;j include convection, diffusion, and unsteady terms. The un-
steady term is q DV

dt ¼ qA dx
dt, where q inside the particle is equal to qp and we let dx

dt ¼ Us (the velocity scale) as it is related to
the velocity scale through the Courant number. uR is defined as follows:
uR ¼ ð1� /Þuþ /uP ð24Þ
where / is the volume fraction occupied by the particle in each control volume, defined separately for u and v-cells. For
example, as shown in Fig. 1, /u ¼ DVhatched

DVu
. In the present study, / is calculated as in [20]. uP, defined only in the particle do-

main, can be calculated as follows:
uP ¼ UP þ x� r ð25Þ
where UP is the particle translational velocity of the center of mass and x is the particle angular velocity. By using conser-
vation of linear and angular momentum for the solid particle, one can calculate the particle translational and angular veloc-
ities as follows [14] and [20]:
MPUP ¼
Z

P
qudx and IPx ¼

Z
P

r� qudx ð26Þ
Defining a rigidity force as in Eqs. (18) and (19) guarantees that, upon convergence at each time step, u ¼ uR everywhere
in the entire domain. The summation of F over each particle is equal to the external forces applied to that particle, excluding
the gravitational and hydrodynamic forces since these two forces are included in Eq. (6). Thus when freely moving particles
are not in contact we have
X

i

X
J

Fxi;J ¼
X

I

X
j

FyI;j ¼ 0 ð27Þ
Using Eqs. (18) and (19) guarantees that the total rigidity force applied to each particle is zero at each iteration. Finally,
the modifications due to the presence of the particle can be included by adding F as a source term in the momentum equa-
tions. Eqs. (18) and (19) are solved after the pressure correction step. Fig. 2 shows the flowchart of the above implementa-
tion. The source term b0 in the pressure correction equation is the continuity imbalance arising from the incorrect velocity
field u�, v�. The details of pressure correction equation and the definition of d are provided in the book by Versteeg and Mal-
alasekera [21]. The above procedure can be simply extended to 3-D flows.

As mentioned earlier, the volume fraction (/) is defined separately for u, v, and p-cells. Thus, in the evaluation of Eqs. (24)
and (26) and defining mass and inertia of the particles, one should use the proper volume fraction for u, v, or p-cells to satisfy
Eq. (27) and the similar equation for torque applied to the particles.

4. Collision strategy

Several studies on the rebound of colliding particles have been published in recent years (e.g. [22,23] and [19]). Davis
et al. [24] employed an elastohydrodynamic model for collision between particles suspended in a liquid. They showed that
the pertinent parameter for collision in the fluid is not the Reynolds number, Re, but the Stokes number St ¼ 1

9
qp
qf

Re where qp

and qf are the particle and fluid densities, respectively and Re ¼ qf UiD
qf

; Ui is the impact velocity and D is the particle diameter.
No rebound occurs for Stokes number lower than about 10 due to the fact that the elastic energy stored by the particle defor-
mation is dissipated in the fluid. For impact Stokes numbers larger than about 500, the coefficient of restitution asymptotes
to that for a dry collision.

In this section, we consider the collision between particles when the Stokes number is smaller than 10 or no rebound
occurs. For Stokes number larger 10, rebound occurs and the collision strategy detailed by Ardekani and Rangel [19], which
is able to handle general shape objects and larger number of particles, should be used. The collision process in this method
starts when the separation between particles is zero for smooth particles or equal to the roughness height ðhminÞ for par-
ticles with a rough surface. We assume that rough surfaces have small bumps with dilute surface coverage and that there
negligible effect on the viscous force until the gap between the smooth portions of surfaces become equal to the size of
largest roughness element. For example, considering two particles of the same diameter and different surface roughness
colliding onto a wall, they have the same behavior until the particle with larger roughness hits the wall. The difference
between these two cases is that the collision starts earlier for the particle with the larger surface roughness. For a friction-
less collision, the tangential force is zero while the same normal force applies to each particle in opposite directions as
shown in Fig. 3. In the present method, upon collision of particles, a contact force is applied to each particle and the rel-
ative velocity of the particles along their line of center vanishes. Using the preceding concepts during the collision process,
we write
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Fig. 3. Schematic of problem and coordinate systems.
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N ¼ N� þ dN; dN ¼ C 0ðUl
C � Uk

CÞ � nk ð28Þ
Fk

xi;J ¼ Fk
xi;J þ dN cosðbÞAi;Jqk

P/
k
ui;J
=MPk

u
ð29Þ

Fk
yI;j ¼ Fk

yI;j þ dN sinðbÞAI;jqk
P/

k
vI;j
=MPk

v
ð30Þ

MPk
u
¼
X

Ai;Jqk
P/

k
ui;J
; MPk

v
¼
X

AI;jqk
P/

k
vI;j

ð31Þ
where UC represents velocity of point C which is the center of curvature at contact point, k and l are the particle indices. For a
system of two particles, k ¼ 1;2 and l ¼ 1;2. These calculations guarantee that
Z

Pk
Fk dx ¼ Nnk ð32Þ
C0 is a dimensional constant defined as C0 ¼ a0ðMpl þMpkÞUs=D where a0 is a dimensionless factor whose values are also
provided in Section 5, and D is the problem length scale which is the particle diameter.

For non-spherical (or non-cylindrical in 2-D) particles the force due to collision may lead to a torque around center of
mass of each particle. In this situation, the uniform distributed force is modified in order to create a net torque around
the center of mass of each particle without changing the net force applied to that particle. Thus, we have
dTk ¼ GkO
��!
� ðdNnkÞ ð33Þ

Fk
xi;J ¼ Fk

xi;J � dTkAi;Jqk
P/

k
ui;J
ðyJ � yk

GÞ=Ixxpk ð34Þ

Ixxpk ¼
X

Ai;Jqk
P/

k
ui;J
ðyJ � yk

GÞ
2 ð35Þ
where yk
G is the vertical position of the center of mass of particle k. This modified force distribution still satisfies Eq. (32).

Moreover
Z
Pk

r� Fk dx ¼ Tkk ð36Þ
where Tk is the net torque applied to particle k due to collision and k is the unit vector along z direction. Eqs. (28)–(36) will
be solved for particle l as well. For multi-particle systems, the procedure is the same as explained above but k and l take val-
ues to cover all possible collisions between particles.

The contact force is impulsive at the onset of the collision process and decreases smoothly to zero when contact ends.
Particles separate from each other when the contact force vanishes and subsequently, a rigidity constraint is satisfied for
each particle separately.

In Fig. 2, these equations will be solved at the step denoted H. The conditions at which collision occurs will be verified at
the step denoted HH. In the present method, we can calculate the contact force between particles and this is used as a cri-
terion to determine the end of the collision process. No other repulsive force is employed. Since the contact force is calcu-
lated, this method can be generalized to frictional collisions. For 3-D calculation, Fz will be calculated in the same way as Eqs.
(29) and (30).

The time step can be adjusted so that when particles come into contact there is no overlap. If a fixed time step were used,
the particles could overlap when they come close to each other. In order to prevent this overlap, the time step should be
adjusted in such a way that the particles come into contact within a specified tolerance. An upper limit should set for the
time step to assure that particles do not overlap upon collision. tnþ1 � tn < dn

=jUn
r j where dn is the separation between par-

ticles at the nth time step and jUn
r j is the relative velocity of the particles towards each other (along the line of centers). In
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general, this limit might not guarantee that the particles do not overlap. However, in the problem of colliding particles, the
deceleration of the particles before collision prevents an overlap.

5. Results and discussion

5.1. Flow past a stationary circular cylinder

As in the first case, the flow past a stationary circular cylinder is modeled. This case is designed to test the solution process
without the added complication of the particle motion and collision. Fig. 4 shows the geometry used for this case. The bound-
ary conditions are

� u ¼ Uin; v ¼ 0 on the left (inlet flow) boundary.
� ov

oy ¼ 0; ou
oy ¼ 0 on the top and bottom boundaries.

� Du
Dt ¼ 0 on the right (exit flow) boundary.

For fixed objects we have
Table 1
Summa

Re

Takami
Dennis
Fornbe
Calhou
Present
uP ¼ 0 and uR ¼ uð1� /Þ ð37Þ
The drag force can be determined by calculating the summation of F in the particle domain. Table 1 shows a summary of
results for different Reynolds numbers where CD is the drag coefficient and L represents the ratio of circulation length to the
particle diameter. The results compare very favorably with both experimental and previous computational results.

For the data presented in Table 1, the mesh size is 1
11 of the particle radius. As it is shown in Fig. 4, the domain size is

30� 60 times the particle radius for Re > 4. The geometry used for Re ¼ 1 and Re ¼ 4 is different from the one shown in
Fig. 4. Since the upstream flow is affected by the presence of the cylinder as much as the downstream flow, we double
the width of the flow domain and the center of the cylinder is moved towards the center of the computational domain.

5.1.1. Unsteady vortex shedding: Re ¼ 100
For higher Reynolds number, instability occurs and the classic oscillatory wake behind the cylinder can be easily captured.

In Fig. 5, we plot lift, drag, and torque coefficients, CL, CD, CT versus non-dimensional time tUin
D , respectively, at Re ¼ 100 where

D is the diameter of particle. The forces which impose zero velocity field in the particle domain are equal to the reaction
forces applied on the cylinder to fix it. Therefore, the lift and drag coefficients can be calculated easily just by calculating
the summation of Fy and Fx in the particle domain, respectively.
R=0.1
3

1.5

6

1.5

Fig. 4. Relative position of cylinder and boundaries.

ry of results for 1 < Re < 40

CDðLÞ

1 4 10 20 30 40

and Keller [25] 10.28 4.44 2.75 (0.25) 2.00 (0.93) 1.72 (1.61) 1.54 (2.32)
and Chang [26] – – 2.85 (0.26) 2.05 (0.94) – 1.52 (2.35)

rg [27] – – – 2.00 (0.91) – 1.50 (2.24)
n [28] – – – 2.19 (0.91) – 1.62 (2.18)

work 11.11 4.65 2.88 (0.24) 2.08 (0.90) 1.75 (1.57) 1.55 (2.23)
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Fig. 5. Time dependent lift, drag, and torque coefficients at Re ¼ 100.

Table 2
Summa

Braza e
Liu et a
Calhoun
Russell
Present
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CD ¼
RFx

1=2qf U
2
inD

CL ¼
RFy

1=2qf U
2
inD

CT ¼
�RFxðy� yGÞ þ RFyðx� xGÞ

1=4qf U
2
inD2 ð38Þ
The summary of results is shown in Table 2. Generally, our results are well within the range of results reported by other
researchers.

The validation of the fluid-particle solver for moving objects and collisions between a spherical particle and a wall and
two cylindrical objects is discussed by Ardekani and Rangel [19]. Here, we present results for collision of general shape ob-
jects and cases with more than two particles.

5.2. Sedimentation of three circular particles in a two dimensional channel

In this section, we present the sedimentation of three circular particles in a Newtonian fluid inside a vertical channel. All
dimensional quantities in this paper are in the CGS system unless otherwise stated. The fluid density is qf ¼ 1, the acceler-
ation of gravity is g ¼ 981, the viscosity is l ¼ 0:01, the particle diameters are 0.25 and the solid-to-fluid density ratio is 1.5.
Particles are released from rest in a channel with a width of 2.5 and a height of 6. The particles are initially at the center of
the channel at y1 ¼ 1:5, y2 ¼ 2, and y3 ¼ 2:45. The Reynolds number based on the maximum velocity of the particles is 650.
The normal derivative of velocity is zero at the downstream boundary. In order to reduce computational cost by using a
smaller domain, modelling is performed in a frame of reference moving with a fixed velocity close to the average velocity
of particles. The mesh sizes is 0.012 and time steps is 0.00025.

The lubrication force acting on two cylinders is linearly proportional to h�
3
2 and hence, the cylinders do not touch in finite

time. However, in a numerical simulation, an infinitesimal grid spacing is necessary to prevent contact, which is not com-
putationally affordable. One could use lubrication theory when the cylinders are sufficiently close to obtain an approximate
solution. In the simulations presented here, the cylinders are not smooth but have a roughness of hmin ¼ 0:5%D.

Fig. 6 shows the characteristic drafting, kissing, and tumbling behavior of three sedimenting particles. The leading particle
creates a wake of low pressure. The middle and trailing particles are caught in its wake. The middle one experiences the low-
est drag hence falls faster than the other two. The increased speed of the middle particle produces a collision (kissing con-
ry of results for Re ¼ 100

CD CL St

t al. [29] 1:36� 0:015 ±0.25 –
l. [30] 1:35� 0:012 ±0.339 0.164

[28] 1:33� 0:014 ±0.298 0.175
and Wang [31] 1:34� 0:007 ±0.276 0.165
work 1:36� 0:0085 ±0.310 0.163
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Fig.6.Sedimentationofthreecircularparticles.Themeshsizeis0.012andthetimestepis0.00025.Theroughnessheightis0.5%oftheparticlediameter.
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tact) with the leading particle. During kissing contact, the two particles form a long body with the line of centers along the
stream. This state is unstable in a Newtonian fluid and as a result the particles tumble under the influence of a couple which
brings them into a broadside stable state. Before the separation of the leading and middle particles, a second collision be-
tween the trailing and middle particles occurs. At this point, the system forms a long body and on average, the line of centers
must be across the stream. As they rotate, the normal force between the leading and middle particles decreases to zero and
they separate. Finally, the middle and trailing particles separate.

Fig. 7 shows the u and v velocity of the particles. The first collision occurs at t ¼ 0:143 and the second collision occurs at
t ¼ 0:285.

Fig. 8 shows the effect of mesh size and time step on the motion of the particles. Fig. 9 shows the error in the maximum
velocity of the middle particle before collision as a function of mesh size and time step. The slope of the error plot reveals
that the current implementation of the scheme is second-order accurate with respect to the grid size and time step.

Different values of a and a0 were chosen to investigate how these parameters affect the number of iterations needed for
convergence at each time step. The different values of a and a0 do not affect the converged solution. The value chosen, num-

t = 0
3375
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Fig. 7. Sedimentation of three circular particles. The mesh size is 0.012 and the time step is 0.00025.
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ber of iterations needed for convergence at each time step, and CPU time using a PC (Pentium 4, CPU 3.00 GHz) for selected
time before and after collision are shown in Table 3.

We should mention that there is no separate iteration for collision. New residuals are defined for rigidity and collision and
the outer iteration converges when all the residuals are small enough. This scheme can be expensive for dense particulate
flows if particles have small roughness. As such this approach may not be as effective in the really challenging multi-particle
scenarios of smooth particles. No other collision models can handle collision of smooth particles unless those which switch
to a lubrication model when the particles are close to each other. For particulate flow with large surface roughness, the num-
ber of iterations needed to calculate the force acting on a particle is of the same order as those needed to solve momentum
and continuity equations. For a case with a ¼ 10, a0 ¼ 1, when no particles are in contact, 79 iterations are in average needed
for convergence at each time step. When two and three particles are in contact 91 and 140 iterations are needed,
respectively.

The residual for the sedimentation of two circular particle is shown in Fig. 10. The variables u, v, and p correspond to the
normalized residual of x momentum, y momentum, and continuity equation over the entire domain, respectively. The vari-
ables uR1, vR1, uR2, and vR2 correspond to the normalized residuals of the rigidified velocity over the particle domain along the
x and y directions for particles 1 and 2, respectively. Uc is the normalized residual for the conservation of linear momentum
during the collision process along the particles line of center. Uc is zero before collision.
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Table 3
Number of iterations for different values of a and a0

a a0 Time (s) Number of iterations CPU time (s)

Before collision
5 1 0.12550–0.12575 182 82
10 1 0.12550–0.12575 92 62
5 2 0.12550–0.12575 176 111

After collision
5 1 0.16175–0.16200 181 82
10 1 0.16175–0.16200 91 50
5 2 0.16175–0.16200 181 104

Iteration Iteration

R
es

id
ua

l

50 100 150 200 250 300
10-4

10-3

10-2

u
v
p
UCuR1vR1uR2vR2

(a) before collision

R
es

id
ua

l

100 200 300 400 500
10-5

10-4

10-3

10-2

u
v
p
UCuR1vR1uR2vR2

(b) after collision

Fig. 10. Residual for the sedimentation of two circular particles. The mesh size is 0.012 and the time step is 0.00025.
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Fig. 11. Sedimentation of an ellipse and a circular particles. The mesh size is 0.013 and the time step is 0.00025.
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5.3. Sedimentation of elliptical and circular particles in a two dimensional channel

In order to show the capability of the algorithm for general shape objects, the sedimentation of elliptical and circular par-
ticles is investigated. Other conditions are similar to those in the previous case. The particles are initially Dx ¼ 0:25 off the
center of the channel at y1 ¼ 1:5 and y2 ¼ 2:3. The diameter of the circular particle is 0.25 and the diameters of the elliptical
particle are 0.25 and 0.5. A moving computational domain is used and the boundary conditions are the same as in the pre-
vious case. The mesh sizes is 0.013 and the time step is 0.00025.
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Fig. 12. Normal force and the torque applied to an ellipse. The mesh size is 0.013 and the time step is 0.00025.
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The ellipse is placed in the wake of the leading circular particle and experiences a lower drag force. The initial long side
along-the-flow position is changed to a broad side position during the fall of the ellipse. As the particles sediment, collision
occurs and the ellipse slips over the sphere (see Fig. 11). As they tumble, the contact force decreases and they separate. The
normal force and the torque acting on the ellipse are shown in Fig. 12. Fig. 13 shows the velocity components. The collision
occurs at t ¼ 0:12825.

6. Conclusions

A finite-volume distributed-Lagrange-multiplier algorithm is developed to solve particulate flows with collisions. A col-
lision strategy is introduced for multi-particle system and general shape objects. In this method, the contact force between
particles is calculated and the method can be generalized for collisions including friction.
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